基于可解釋性引導CNN的多任務學習模型
首發時間:2023-05-12
摘要:深度學習方法在醫學影像的分類和分割任務中表現出色,但是由于決策過程缺乏可解釋性,限制了它的臨床應用。本文利用可解釋方法引導卷積神經網絡(CNN)提出一個端到端的、可解釋的多任務學習模型(IGMTL)。IGMTL可以完成消化內鏡病變圖像的識別分類與分割任務。該模型首先利用CNN和可解釋方法得到輸入圖像的注意力圖,然后基于注意力圖得到輸入圖像的掩膜圖像,接著將掩膜圖像送入CNN,最后針對IGMTL模型提出了新的損失函數訓練模型。本文基于公開數據集Kvasir中息肉與正常盲腸兩類圖像來驗證IGMTL模型的有效性。對于息肉圖像的識別任務, IGMTL的召回率和準確率比未加可解釋引導的CNN分別提高4\%和2\%。對于息肉圖像弱監督分割任務,IGMTL弱監督分割的IoU比FCM聚類模型提高11.79\%。從弱監督分割的定性結果來看,IGMTL能夠較準確的完成息肉圖像的弱監督分割任務。因此,IGMTL模型不僅可用于病變圖像識別,還可輔助醫生的臨床診斷,或者指導非專業人士標注消化內鏡圖像的病變區域。
關鍵詞: 深度學習 可解釋性方法 圖像分類 圖像分割 醫學影像
For information in English, please click here
A multi-tasking learning model based on interpretable guided CNN}%\authorCHN{劉佳, 姚蘭}%\authorENG{LIU Jia}%\affiliationCHN{% 湖南大學數學學院,長沙 410082 %}%\affiliationENG{% School of Mathematics, University of Hunan, Changsha 410082 %
Abstract:Deep learning method performs well in the classification and segmentation tasks of medical images, but its clinical application is limited due to the lack of interpretability in the decision-making process. This paper uses interpretable methods to guide convolutional neural networks (CNN) to propose an end-to-end, interpretable multi-task learning model (IGMTL). IGMTL can complete gastrointestinal endoscopic lesion image classification and segmentation. The model first uses CNN and interpretability methods to obtain the attention map of the input image, then generates the mask image of the input image based on the attention map, and finally feeds the mask image into the CNN. A new loss function is proposed to train the IGMTL model. This paper verified the effectiveness of the IGMTL model on two types of images, polyps and normal cecum, in the public dataset Kvasir. For the polyp recognition task, the recall and accuracy of IGMTL were 4\% and 2\% higher than those of the CNN without interpretable guidance. For the weakly supervised segmentation task of polyp images, the IoU of IGMTL was 11.79\% higher than that of the FCM clustering model. From the qualitative results of weakly supervised segmentation, IGMTL can accurately complete the weakly supervised segmentation task of polyp images. Therefore, the IGMTL model can not only be used for lesion image recognition, but also can assist doctors in clinical diagnosis or guide non-professionals to annotate the lesion areas of endoscopic images.
Keywords: Deep learning Interpretable method Image classification Image segmentation Medical image
基金:
引用
No.****
動態公開評議
共計0人參與
勘誤表
基于可解釋性引導CNN的多任務學習模型
評論
全部評論